An intelligent based LQR controller design to power system stabilization
نویسندگان
چکیده
This paper presents an intelligent model, named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. Also, it is shown that the free model is controllable, observable, and robust to disturbance. In this paper, the feasibility of the proposed method is demonstrated in a three-machine nine-bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS and LQR controller based on the ARMA-model. The free-model based (FMB) PSS is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure. © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
An Efficient Optimal Fractional Emotional Intelligent Controller for an AVR System in Power Systems
In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous generator at a specified level. The proposed control strategy is based on brain emotional ...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملDesign of A Self-Tuning Adaptive Power System Stabilizer
Power system stabilizers (PSSs) must be capable of providing appropriate stabilization signals over abroad range of operating conditions and disturbances. The main idea of this paper is changing aclassic PSS (CPSS) to an adaptive PSS using genetic algorithm. This new genetic algorithm based onadaptive PSS (GAPSS) improves power system damping, considerably. The controller design issue isformula...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملVehicle Stabilization via a Self-Tuning Optimal Controller
Nowadays, using advanced vehicle control and safety systems in vehicles is growing rapidly. In this regard, in recent years new control systems, called VDC, have been introduced. These systems stabilize vehicle yaw motion, by yaw moment resulted from tire controlling forces. In this paper, an adaptive optimal controller applied to a vehicle to obtain a satisfactory lateral and yaw stability. To...
متن کامل